Inhibitory responses of rat basolateral amygdaloid neurons recorded in vitro.

نویسندگان

  • M S Washburn
  • H C Moises
چکیده

The purpose of the present study was to characterize the ionic and pharmacological basis of the actions of synaptically released and exogenously applied GABA in basolateral amygdaloid pyramidal cells in vitro. Stimulation of forebrain afferents to pyramidal neurons in the basolateral amygdala evoked an excitatory postsynaptic potential followed by early and late inhibitory postsynaptic potentials. The early inhibitory postsynaptic potential had a reversal potential near -70 mV, was sensitive to changes in the chloride gradient across the membrane and was blocked by the GABAA antagonists picrotoxin and bicuculline methiodide but not by the GABAB antagonists phaclofen or 2-hydroxysaclofen. In contrast, the late inhibitory postsynaptic potential had a reversal potential of approximately -95 mV and was markedly reduced or abolished by GABAB antagonists. Pressure application of GABA to the surface of the slice typically elicited a triphasic response in basolateral amygdaloid pyramidal neurons consisting of a short-latency hyperpolarization that preceded or was superimposed on a membrane depolarization followed by a longer latency hyperpolarization. Each of the responses was associated with an increase in membrane conductance. Determinations of the reversal potential, ionic dependency and sensitivity to pharmacological blockade of each component of the GABA-induced response revealed that the initial hyperpolarizing (Erev approximately -70 mV) and depolarizing (Erev approximately -55 mV) responses were mediated by a GABAA-mediated increase in chloride conductance, whereas the late hyperpolarizing response (Erev approximately -82 mV) to GABA arose from a GABAB-mediated increase in potassium conductance. Experiments in which GABA was applied at various locations on the cell suggested that the short-latency hyperpolarization resulted from activation of somatic GABA receptors, whereas the depolarizing and late hyperpolarizing responses were generated primarily in the dendrites. In contrast to the complex membrane response profile elicited by GABA, pressure ejection of the GABAB agonist baclofen produced only membrane hyperpolarizations. Taken together, these results suggest that inhibitory responses that are recorded in basolateral amygdaloid pyramidal cells are mediated by activation of both GABAA and GABAB receptors. Consistent with findings elsewhere in the CNS, the early inhibitory postsynaptic potential and initial hyperpolarization and depolarizing response to local GABA application appear to involve a GABAA-mediated increase in chloride conductance, whereas the late inhibitory postsynaptic potential and the late hyperpolarizing response to GABA arise from a GABAB-mediated increase in potassium conductance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo kindling does not alter afterhyperpolarizations (AHPs) following action potential firing in vitro in basolateral amygdala neurons.

Kindling in vivo results in enhanced glutamatergic synaptic transmission and epileptiform bursting in vitro in neurons of the basolateral amygdala (BLA). We tested the hypothesis that reduction of intrinsic inhibitory mechanisms, such as the slow- and medium-afterhyperpolarizations (s-AHPs, m-AHPs), contributes to the enhanced neuronal excitability observed in kindling-induced epileptogenesis u...

متن کامل

Electrophysiological and morphological properties of rat basolateral amygdaloid neurons in vitro.

Electrophysiological and morphological properties of neurons in the rat basolateral amygdala (BLA) were assessed using intracellular recordings in brain slice preparations. The vast majority of cells studied were identified as pyramidal cells on the basis of their accommodation response and by a prominent afterhyperpolarization that followed a current-evoked burst of action potentials. The seco...

متن کامل

Topiramate reduces excitability in the basolateral amygdala by selectively inhibiting GluK1 (GluR5) kainate receptors on interneurons and positively modulating GABAA receptors on principal neurons.

Topiramate [2,3:4,5-bis-O-(1-methylethylidene)-beta-D-fructopyranose sulfamate] is a structurally novel antiepileptic drug that has broad efficacy in epilepsy, but the mechanisms underlying its therapeutic activity are not fully understood. We have found that topiramate selectively inhibits GluK1 (GluR5) kainate receptor-mediated excitatory postsynaptic responses in rat basolateral amygdala (BL...

متن کامل

Effect of Protein Malnutrition on Efferent Projections of Amygdala to the Hippocampus

ABSTRACTIntroduction: Previous investigations have shown that protein malnutrition can alters the structure and function of some areas of hippocampal formation. We investigated the effect of protein malnutrition on amygdaloid projections to the CA1 hippocampal area. In this study we investigated level and pattern of distribution of efferent projections from amygdala to hippocampus in the rat by...

متن کامل

Dopamine modulates excitability of basolateral amygdala neurons in vitro.

The amygdala plays a role in affective behaviors, which are modulated by the dopamine (DA) innervation of the basolateral amygdala complex (BLA). Although in vivo studies indicate that activation of DA receptors alters BLA neuronal activity, it is unclear whether DA exerts direct effects on BLA neurons or whether it acts via indirect effects on BLA afferents. Using whole cell patch-clamp record...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 50 4  شماره 

صفحات  -

تاریخ انتشار 1992